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Passive Brain-computer Interfaces (BCI) are capable of estimating a user's cognitive state, mental workload, and 
are used in many other applications [5,6]. However, to make them usable in everyday life there are various 
challenges. One of them is large variability in the brain signals [4]. The given task in the Passive BCI Hackathon is 
to predict the mental workload (intra-subject estimation), where a  subject performs three subtasks with the different 
levels of difficulties. BCI works in four main steps: Data Acquisition, Pre-processing and filtering, Feature extraction, 
and Classification and evaluation of the output. The provided pre-processed and epoched data is used for multi-
class classification with easy, medium, and difficult conditions.  

The filtered data is then used as an input for feature extraction, which also serves as a dimensionality reduction 
technique for better visualization of the data and improved predictive performance of the classifier.   

Since, this is a multiclass problem, classification pipeline with feature extraction is implemented as follows: 

Also, figure 2 describes the visualization of this pipeline 

Step 1, the pre-processing of the data was performed using the EEGLAB toolbox [3] which consists of Epoching 
into 2-second non-overlapping epochs, Referencing using right mastoid electrode, High-pass filter 1 Hz (FIR Filter, 
pop-filtnew from EEGlab), Electrode rejection (average amplitude above 2 sd across channels) + spherical 
interpolation, SOBI with subsequent automated IC_Label rejection (muscle, heart and eye components were 
rejected with a 95% threshold), Low-pass filter 40 Hz (FIR Filter), Average re-referencing (CAR), Down sampling 
to 250 Hz. 

The epoched and cleaned data (session 1 + session 2) is taken and CSP is used to extract the features from this 
input data. MNE [2], an open-source python library, is used to estimate spatial filters for feature extraction. Common 
spatial pattern, CSP, is used for feature extraction [7]. The basic principle behind CSP is to apply a linear 
transformation to project the multi-channel EEG signal data to a lower-dimensional spatial subspace. The 
transformation results in the maximization of the variance of one class while minimizing the variance of other 
classes at the same time. For the implementation, the number of filters is tuned for each subject, which lies in the 
range of  (4 to 64). Also, all the 61 channels are used to avoid any loss of information. Later on, test data (session 
3) is used for prediction using the trained model.  

Step 2, the labels are arranged in three different ways. Figure 1 below describes this approach with labels Y0, Y1, 
and Y2. For instance, in Y0 the samples of category easy condition (label 0) are marked as 1 while others as 0. 
Similarly,  in Y1 the samples of category medium condition (label 1) are marked as 1 while others as 0. Therefore, 
the matrix is a diagonal matrix. 

Step 3, the model is trained using the calculated csp feature vectors in step 1 with the newly formed labels 
(Y0,Y1,Y2). After training is finished, there are three models: Model_easy, Model_medium, and Model_difficult. For 
model training, Random forest method is chosen along with hyperparameter optimization using Grid search cross-
validation [1]. Random forest consists of a large number of individual decision trees that operate as an ensemble. 
Each individual tree in the random forest gives a class prediction and the class with the majority votes becomes 
the final model prediction. 

The Random forest parameters: n_estimators, max_features, max_depth, min_sample_split are tuned for every 
subject to obtain the best combination of parameter values for each subject. All the other parameters take the 
default value. Also, for each subject the value of k (cross-validation parameter) is also tuned explicitly, which is 
either 5 or 10. Since, every subject will have a different combination of optimal values of Hyperparameters, this 
step is crucial.  

Step 4, The trained model is finally ready and we can start making predictions with unseen or test data which is 
from session 3, which is the EEG data recorded on a different day (cross-session estimation). Suppose, the 
predicted values are P0, P1, and P2 for each model. Then the maximum value is chosen from the three predicted 
values. In this way, the chance level is still 33.33% as the prediction is computed in a combined way by taking all 
the three models into consideration, giving equal importance while calculating the final prediction. 

Labels Label 0 (easy) Label 1 (medium) Label 2 (difficult) 

Y0 (easy condition) 1 0 0 

Y1 (Medium condition) 0 1 0 

Y2 (Difficult condition) 0 0 1 

Figure 1: Arrangement of the labels for model training 



 

Figure 2 describes the end-to-end pipeline with a clear demonstration of the steps mentioned before. Using the 
trained model, when we generalize the model using X_test data we get the prediction values for instance, for the 
first sample, predictions by all the 3 models are 0.2,0.6, and 0.4. The maximum value  is 0.6. Hence, the assigned 
label is Medium. Similarly, for the second sample, the highest among 0.1,0.2,0.7 is 0.7 therefore, the assigned 
label is Difficult.   
 

 

Figure 2: Visualization of the pipeline with training and testing scenarios.  
 

Results and Evaluation 

For model evaluation, the performance metric chosen is Accuracy, which is the ratio of a total number of correct 
predictions to the total number of predictions. For the demonstration of effectiveness of the proposed algorithm, 
the bar plot below describes the training and testing  accuracies for each subject. The data is combined from 
session 1 and session 2  where 10% of the data is chosen as a test set for computing model performance. We can 
say that all the subjects managed to exceed the chance level of 33.33%. The highest test accuracy of 92.22%  is 
reported by subject 6 and 9. The mean training accuracy is 97.74% while mean test accuracy is 83.34% across all 
the subjects. Since, in most of the subjects the difference between training and testing accuracies is not significantly 
large, we can deduce that the model is not overfitting.  

                 
 



Conclusion 

The overall aim of this pipeline is to decode the mental workload from EEG signals on a new unseen session, from 
a training data set comprising several sessions. With the implemented methodology, it is possible to predict above 
the chance level. However, more advanced development is still required to effectively use it in day-to-day life.   
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